Skip to main content

Tips for analyzing Excel data in R

(This article was first published on Revolutions, and kindly contributed to R-bloggers)

If you're familiar with analyzing data in Excel and want to learn how to work with the same data in R, Alyssa Columbus has put together a very useful guide: How To Use R With Excel. In addition to providing you with a guide for installing and setting up R and the RStudio IDE, it provide a wealth of useful tips for working with Excel data in R, including:

  • To import Excel data into R, use the readxl package
  • To export Excel data from R, use the openxlsx package
  • How to remove symbols like "$" and "%" from currency and percentage columns in Excel, and convert them to numeric variables suitable for analysis in R
  • How to do computations on variables in R, and a list of common Excel functions (like RAND and VLOOKUP) with their R equivalents
  • How to emulate common Excel chart types (like histograms and line plots) using R plotting functions

Conversely, you can also use R within Excel. The guide suggests BERT (Basic Excel R Toolkit), which allows you to apply R functions to Excel data via the Excel formula interface:

BERT-loop

With BERT, you can also open an R console within Excel, and use R commands to manipulate data within the spreadsheet. BERT is open-source and available here, and you can see the detailed guide to using Excel data in R at the link below.

RPubs: How To Use R With Excel (via author Alyssa Columbus)

To leave a comment for the author, please follow the link and comment on their blog: Revolutions.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...


from R-bloggers https://ift.tt/2wt4ZjG
via IFTTT

Comments

Popular posts from this blog

Solving Van der Pol equation with ivp_solve

Van der Pol’s differential equation is The equation describes a system with nonlinear damping, the degree of damping given by μ. If μ = 0 the system is linear and undamped, but for positive μ the system is nonlinear and damped. We will plot the phase portrait for the solution to Van der Pol’s equation in Python using SciPy’s new ODE solver ivp_solve . The function ivp_solve does not solve second-order systems of equations directly. It solves systems of first-order equations, but a second-order differential equation can be recast as a pair of first-order equations by introducing the first derivative as a new variable. Since y is the derivative of x , the phase portrait is just the plot of ( x , y ). If μ = 0, we have a simple harmonic oscillator and the phase portrait is simply a circle. For larger values of μ the solutions enter limiting cycles, but the cycles are more complicated than just circles. Here’s the Python code that made the plot. from scipy import linspace from ...

Lawyer: 'Socialite Grifter' Anna Sorokin 'Had To Do It Her Way' (And Steal $275,000)

Opening statements were made in the "Socialite Grifter" trial on Wednesday, and both sides provided extremely different reasons why Anna Sorokin allegedly scammed a number of people and institutions out of $275,000. [ more › ] Gothamist https://ift.tt/2HXgI0E March 29, 2019 at 12:33AM

5 Massively Important AI Features In Time Tracking Applications

Artificial intelligence has transformed the future of many industries. One area that has been under- investigated is the use of AI in time tracking technology. AI is Fundamentally Changing the Future of Time Tracking Technology A time tracking software is a worthy investment irrespective of the size of your organization. It generates accurate reports based on the amount of time your team spends working on a task. These reports facilitate planning of budgets for upcoming projects. Many AI tools are changing the nature of time management. MindSync AI discussed the pivotal role of AI in time management in a Medium article . Why is time tracking software important? It helps with keeping track of the hours being invested on a given task. This sheds light on the timeline for the overall project. It also helps in determining the productivity levels of the employees. This is one of the many reasons that AI is driving workplace productivity . But how can employers utilize it effectively? ...