Skip to main content

Eigenvalue distribution of nonlinear models of random matrices

Here is a more mathematical way of dealing with nonlinearities in DNNs. 



This paper is concerned with the asymptotic empirical eigenvalue distribution of a non linear random matrix ensemble. More precisely we consider M=1mYY∗ with Y=f(WX) where W and X are random rectangular matrices with i.i.d. centered entries. The function f is applied pointwise and can be seen as an activation function in (random) neural networks. We compute the asymptotic empirical distribution of this ensemble in the case where W and X have sub-Gaussian tails and f is real analytic. This extends a previous result where the case of Gaussian matrices W and X is considered. We also investigate the same questions in the multi-layer case, regarding neural network applications.



Follow @NuitBlog or join the CompressiveSensing Reddit, the Facebook page, the Compressive Sensing group on LinkedIn  or the Advanced Matrix Factorization group on LinkedIn

Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email.

Other links:
Paris Machine LearningMeetup.com||@Archives||LinkedIn||Facebook|| @ParisMLGroup About LightOnNewsletter ||@LightOnIO|| on LinkedIn || on CrunchBase || our Blog
About myselfLightOn || Google Scholar || LinkedIn ||@IgorCarron ||Homepage||ArXiv
Nuit Blanche http://bit.ly/2vtwWXW April 30, 2019 at 08:00AM

Comments

Popular posts from this blog

Using RStudio and LaTeX

(This article was first published on r – Experimental Behaviour , and kindly contributed to R-bloggers) This post will explain how to integrate RStudio and LaTeX, especially the inclusion of well-formatted tables and nice-looking graphs and figures produced in RStudio and imported to LaTeX. To follow along you will need RStudio, MS Excel and LaTeX. Using tikzdevice to insert R Graphs into LaTeX I am a very visual thinker. If I want to understand a concept I usually and subconsciously try to visualise it. Therefore, more my PhD I tried to transport a lot of empirical insights by means of  visualization . These range from histograms, or violin plots to show distributions, over bargraphs including error bars to compare means, to interaction- or conditional effects of regression models. For quite a while it was very tedious to include such graphs in LaTeX documents. I tried several ways, like saving them as pdf and then including them in LaTeX as pdf, or any other file ...

Controlling legend appearance in ggplot2 with override.aes

[This article was first published on Very statisticious on Very statisticious , and kindly contributed to R-bloggers ]. (You can report issue about the content on this page here ) Want to share your content on R-bloggers? click here if you have a blog, or here if you don't. In ggplot2 , aesthetics and their scale_*() functions change both the plot appearance and the plot legend appearance simultaneously. The override.aes argument in guide_legend() allows the user to change only the legend appearance without affecting the rest of the plot. This is useful for making the legend more readable or for creating certain types of combined legends. In this post I’ll first introduce override.aes with a basic example and then go through three additional plotting scenarios to how other instances where override.aes comes in handy. Table of Contents R packages Introducing override.aes Adding a guides() layer Using the guide argument in scale_*() Changing multiple aesthetic par...