Skip to main content

More models, more features: what’s new in ‘parameters’ 0.2.0

[This article was first published on R on easystats, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The easystats project continues to grow, expanding its capabilities and features, and the parameters package 0.2.0 update is now on CRAN.

The primary goal of this package is to provide utilities for processing the parameters of various statistical models. It is useful for end-users as well as developers, as it is a lightweight and open-developed package.

The main function, model_parameters(), can be seen as an alternative to broom::tidy(). However, the package also include many more useful features, some of which are described in our improved documentation:

Improved Support

Besides stabilizing and improving the functions for the most popular models (glm(), glmer(), stan_glm(), psych and lavaan…), the functions p_value(), ci(), standard_error(), standardize() and most importantly model_parameters() now support many more model objects, including mixed models from packages nlme, glmmTMB or GLMMadaptive, zero-inflated models from package pscl, other regression types from packages gam or mgcv, fixed effects regression models from panelr, lfe, feisr or plm, and structural models from FactoMineR.

Improved Printing

For models with special components, in particular zero-inflated models, model_parameters() separates these components for a clearer output.

## # Conditional component
## 
## Parameter   | Coefficient |   SE |         95% CI |     z |      p
## ------------------------------------------------------------------
## (Intercept) |       -0.36 | 0.28 | [-0.90,  0.18] | -1.30 | > .1  
## spp (PR)    |       -1.27 | 0.24 | [-1.74, -0.80] | -5.27 | < .001
## spp (DM)    |        0.27 | 0.14 | [ 0.00,  0.54] |  1.95 | 0.05  
## spp (EC-A)  |       -0.57 | 0.21 | [-0.97, -0.16] | -2.75 | < .01 
## spp (EC-L)  |        0.67 | 0.13 | [ 0.41,  0.92] |  5.20 | < .001
## spp (DES-L) |        0.63 | 0.13 | [ 0.38,  0.87] |  4.96 | < .001
## spp (DF)    |        0.12 | 0.15 | [-0.17,  0.40] |  0.78 | > .1  
## mined (no)  |        1.27 | 0.27 | [ 0.74,  1.80] |  4.72 | < .001
## 
## # Zero-Inflated component
## 
## Parameter   | Coefficient |   SE |         95% CI |     z |      p
## ------------------------------------------------------------------
## (Intercept) |        0.79 | 0.27 | [ 0.26,  1.32] |  2.90 | < .01 
## mined (no)  |       -1.84 | 0.31 | [-2.46, -1.23] | -5.87 | < .001

Join the team

There is still room for improvement, and some new exciting features are already planned. Feel free to let us know how we could further improve this package!

Note that easystats is a new project in active development, looking for contributors and supporters. Thus, do not hesitate to contact one of us if you want to get involved 🙂

  • Check out our other blog posts here!

To leave a comment for the author, please follow the link and comment on their blog: R on easystats.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.


from R-bloggers https://ift.tt/2olxcrx
via IFTTT

Comments

Popular posts from this blog

Controlling legend appearance in ggplot2 with override.aes

[This article was first published on Very statisticious on Very statisticious , and kindly contributed to R-bloggers ]. (You can report issue about the content on this page here ) Want to share your content on R-bloggers? click here if you have a blog, or here if you don't. In ggplot2 , aesthetics and their scale_*() functions change both the plot appearance and the plot legend appearance simultaneously. The override.aes argument in guide_legend() allows the user to change only the legend appearance without affecting the rest of the plot. This is useful for making the legend more readable or for creating certain types of combined legends. In this post I’ll first introduce override.aes with a basic example and then go through three additional plotting scenarios to how other instances where override.aes comes in handy. Table of Contents R packages Introducing override.aes Adding a guides() layer Using the guide argument in scale_*() Changing multiple aesthetic par...

Using RStudio and LaTeX

(This article was first published on r – Experimental Behaviour , and kindly contributed to R-bloggers) This post will explain how to integrate RStudio and LaTeX, especially the inclusion of well-formatted tables and nice-looking graphs and figures produced in RStudio and imported to LaTeX. To follow along you will need RStudio, MS Excel and LaTeX. Using tikzdevice to insert R Graphs into LaTeX I am a very visual thinker. If I want to understand a concept I usually and subconsciously try to visualise it. Therefore, more my PhD I tried to transport a lot of empirical insights by means of  visualization . These range from histograms, or violin plots to show distributions, over bargraphs including error bars to compare means, to interaction- or conditional effects of regression models. For quite a while it was very tedious to include such graphs in LaTeX documents. I tried several ways, like saving them as pdf and then including them in LaTeX as pdf, or any other file ...