Skip to main content

Sum of divisor powers

The function σk takes an integer n and returns the sum of the kth powers of divisors of n. For example, the divisors of 14 are 1, 2, 4, 7, and 14. If we set k = 3 we get

σ3(n) = 1³ + 2³ + 4³ + 7³ + 14³ = 3096.

A couple special cases may use different notation.

  • σ1(n) is the sum of the divisors of n and the function is usually written σ(n) with no subscript.

In Python you can compute σk(n) using divisor_sigma from SymPy. You can get a list of the divisors of n using the function divisors, so the bit of code below illustrates that divisor_sigma computes what it’s supposed to compute.

    n, k = 365, 4
    a = divisor_sigma(n, k)
    b = sum(d**k for d in divisors(n))
    assert(a == b)

The Wikipedia article on σk gives graphs for k = 1, 2, and 3 and these graphs imply that σk gets smoother as k increases. Here is a similar graph to those in the article.

The plots definitely get smoother as k increases, but the plots are not on the same vertical scale. In order to make the plots more comparable, let’s look at the kth root of σk(n). This amounts to taking the Lebesgue k norm of the divisors of n.

Now that the curves are on a more similar scale, let’s plot them all on a single plot rather than in three subplots.

If we leave out k = 1 and add k = 4, we get a similar plot.

The plot for k = 2 that looked smooth compared to k = 1 now looks rough compared to k = 3 and 4.

The post Sum of divisor powers first appeared on John D. Cook.



from John D. Cook https://ift.tt/2QEhFy2
via IFTTT

Comments

Popular posts from this blog

Solving Van der Pol equation with ivp_solve

Van der Pol’s differential equation is The equation describes a system with nonlinear damping, the degree of damping given by μ. If μ = 0 the system is linear and undamped, but for positive μ the system is nonlinear and damped. We will plot the phase portrait for the solution to Van der Pol’s equation in Python using SciPy’s new ODE solver ivp_solve . The function ivp_solve does not solve second-order systems of equations directly. It solves systems of first-order equations, but a second-order differential equation can be recast as a pair of first-order equations by introducing the first derivative as a new variable. Since y is the derivative of x , the phase portrait is just the plot of ( x , y ). If μ = 0, we have a simple harmonic oscillator and the phase portrait is simply a circle. For larger values of μ the solutions enter limiting cycles, but the cycles are more complicated than just circles. Here’s the Python code that made the plot. from scipy import linspace from ...

Lawyer: 'Socialite Grifter' Anna Sorokin 'Had To Do It Her Way' (And Steal $275,000)

Opening statements were made in the "Socialite Grifter" trial on Wednesday, and both sides provided extremely different reasons why Anna Sorokin allegedly scammed a number of people and institutions out of $275,000. [ more › ] Gothamist https://ift.tt/2HXgI0E March 29, 2019 at 12:33AM

5 Massively Important AI Features In Time Tracking Applications

Artificial intelligence has transformed the future of many industries. One area that has been under- investigated is the use of AI in time tracking technology. AI is Fundamentally Changing the Future of Time Tracking Technology A time tracking software is a worthy investment irrespective of the size of your organization. It generates accurate reports based on the amount of time your team spends working on a task. These reports facilitate planning of budgets for upcoming projects. Many AI tools are changing the nature of time management. MindSync AI discussed the pivotal role of AI in time management in a Medium article . Why is time tracking software important? It helps with keeping track of the hours being invested on a given task. This sheds light on the timeline for the overall project. It also helps in determining the productivity levels of the employees. This is one of the many reasons that AI is driving workplace productivity . But how can employers utilize it effectively? ...