Skip to main content

2020 Table Contest Deadline Extended

[This article was first published on RStudio Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The original deadline for the 2020 Table Contest was scheduled for October 31, 2020.

We know you’ve been busy and that’s okay. Because we’ve had a number of requests for extensions — including some interest in summarizing election data — the deadline has been extended by two weeks to November 14, 2020.

If you have already submitted an entry, you are free to update it up to the closing date. Find all table contest submissions on RStudio Community.

To leave a comment for the author, please follow the link and comment on their blog: RStudio Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The post 2020 Table Contest Deadline Extended first appeared on R-bloggers.



from R-bloggers https://ift.tt/37XoW5O
via IFTTT

Comments

Popular posts from this blog

Solving Van der Pol equation with ivp_solve

Van der Pol’s differential equation is The equation describes a system with nonlinear damping, the degree of damping given by μ. If μ = 0 the system is linear and undamped, but for positive μ the system is nonlinear and damped. We will plot the phase portrait for the solution to Van der Pol’s equation in Python using SciPy’s new ODE solver ivp_solve . The function ivp_solve does not solve second-order systems of equations directly. It solves systems of first-order equations, but a second-order differential equation can be recast as a pair of first-order equations by introducing the first derivative as a new variable. Since y is the derivative of x , the phase portrait is just the plot of ( x , y ). If μ = 0, we have a simple harmonic oscillator and the phase portrait is simply a circle. For larger values of μ the solutions enter limiting cycles, but the cycles are more complicated than just circles. Here’s the Python code that made the plot. from scipy import linspace from ...

Explaining models with Triplot, part 1

[This article was first published on R in ResponsibleML on Medium , and kindly contributed to R-bloggers ]. (You can report issue about the content on this page here ) Want to share your content on R-bloggers? click here if you have a blog, or here if you don't. Explaining models with triplot, part 1 tl;dr Explaining black box models built on correlated features may prove difficult and provide misleading results. R package triplot , part of the DrWhy.AI project, is aiming at facilitating the process of explaining the importance of the whole group of variables, thus solving the problem of correlated features. Calculating the importance of explanatory variables is one of the main tasks of explainable artificial intelligence (XAI). There are a lot of tools at our disposal that helps us with that, like Feature Importance or Shapley values, to name a few. All these methods calculate individual feature importance for each variable separately. The problem arises when features used ...